ФЕДЕРАЛЬНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ ПРОГРАММА РАЗВИТИЯ СИНХРО-ТРОННЫХ И НЕЙТРОННЫХ ИССЛЕДОВАНИЙ И ИССЛЕДОВАТЕЛЬСКОЙ ИН-ФРАСТРУКТУРЫ НА 2019-2027 ГОДЫ

Соглашение о предоставлении из федерального бюджета грантов в форме субсидий в соответствии с пунктом 4 статьи 78.1 Бюджетного кодекса Российской Федерации от 12.10.2021 г. № 075-15-2021-1355

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ИСПОЛЬЗОВАНИЕ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ДЛЯ ВИРУСОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ (Заключительный)

РЕФЕРАТ

Отчет 620 стр., 283 рис., 43 табл., 418 источников

СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ, БЕЛКОВАЯ КРИСТАЛЛОГРАФИЯ, РЕНТГЕНОГРАФИЯ ЖИВОТНЫХ, ОНКОЛИТИЧЕСКИЕ ВИРУСЫ, РЕКОМБИНАНТНЫЕ ВИРУСНЫЕ БЕЛКИ. ПРОТИВОВИРУСНЫЕ ПРЕПАРАТЫ

Новые и вновь возникающие инфекционные вирусные заболевания угрожали человечеству на протяжении всей его истории, например, натуральная оспа долгое время занимала одно из первых мест среди инфекционных заболеваний из-за высокой смертности и инвалидизации переболевших, или же новая коронавирусная инфекция COVID-19, которая уже в наше время унесла почти 7 миллионов человеческих жизней. Для ускоренной разработки вакцин и противовирусных препаратов важно получить детальные знания о пространственной структуре вирусных белков и их комплексов, формирующихся при инфицировании организма человека вирусами, а для качественного проведения клинических и доклинических испытаний важен своевременный подбор чувствительных животных моделей и изучение с их помощью патогенеза инфекционного заболевания. Все эти исследования могут быть проведены с использованием нового мощного исследовательского инструмента – источника синхротронного излучения. В ходе выполнения исследовательской программы были получены основные, перечисленные ниже результаты.

Сконструированы три рекомбинантных варианта вируса осповакцины штамма Л-ИВП – VV-mNIS-NS1, VV-mNIS-Apo и VV-mNIS-dGF, несущих встройку трансгена симпортера йодида натрия мыши (mNIS). Полученные рекомбинантные вирусы осповакцины обладают противоопухолевой и антиметастатической активностью в отношении карциномы толстой кишки мыши и меланомы В-16. Проведены рентгеноскопические исследования мышей с аллографтами В16-F10 в процессе виротерапии рекомбинантом VV-NIS-NS1

на синхротроне ВЭПП-4М в ИЯФ СО РАН в режиме фазового контраста и при контрастировании йодом. В режиме фазового контраста визуализированы границ опухоли, а при использовании йодсодержащего препарата — четко видны ткани и органы мышей. Методом рентгенофлуоресцентного элементнного анализа опухолей с использованием синхротронного излучения показано накопление нерадиоактивного йодида в подкожных ксено- и аллографтах клеток опухолей *in vivo*. Отработанные методы будут в дальнейшем использоваться для изучения тонких механизмов патогенеза вируса на модельных животных и тераностики онкологических заболеваний.

Разработано несколько продуцентов вирусных белков, в том числе белков новых вирусов, произведена их наработка в про-и эукариотических системах. Методом малоуглового рассеяния изучен комплекс RBD домена S-белка с антителом DA-HMC и уточнено взаимное расположение мономерных частей полноразмерного S-белка. Проведены эксперименты по кристаллизации основной протеазы 3CL SARS-COV-2, пикоранина 3C риновируса A28, домена III вируса лихорадки Западного Нила, белка Е вируса клещевого энцефалита и др. Получены дифракционные данные от кристаллов комплексов основной протеазы 3CL SARS-COV-2 с ингибиторами со средним разрешением, установлен сайт связывания ингибиторов. Проведены предварительные структурные исследования пикорнаина 3С риновируса A28, белка Е вируса клещевого энцефалита, домена III вируса лихорадки Западного Нила. Получены синхротронные дифракционные данные белка Е вируса клещевого энцефалита с разрешением 3.02 Å. Синтезирована трансмембранная область протонного канала М2 вируса гриппа твердофазным методом, охарактеризован специфический ингибитор белка. Проведен анализ модельных структурных данных протонного канала М2 вируса гриппа для разработки и оптимизации структурной формулы ингибитора М2-канала. Методом КриоЭМ определены и оптимизированы условия пробоподготовки образцов рекомбинантного тримера S-белка SARS-CoV-2. Осуществлен поиск новых потенциальных Т- и В-клеточных эпитопов к спайковому белку SARS-CoV-2. Проведено предварительное моделирование биохимических, фармакокинетических и токсилогических свойств протитпа пептидной вакцины от SARS-CoV-2 с использованием биоинформатики. КриоЭМисследованием показано, что гликобелок ВИЧ-1 подвержен агрегации. Для ряда амидов производных бензойной кислоты, содержащих адамантановый фрагмент, и производных 2арилимидазолов, содержащих различные заместители, для которых показана противовирусная активность, получены монокристаллические образцы и проведены рентгеноструктурные исследования. Проведён поиск возможных полиморфных и сольватоморфных модификаций отобранных противовирусных соединений, найдены условия получения двух гидратов, расшифрованы, описаны и депонированы их структуры. Таким образом получены фундаментальные основы механизма работы некоторых вирусов, представляющих эпидемиологическую угрозу для человека, позволяющие разработать новые антивирусные стратегии.

Разработаны и введены в эксплуатацию две метрологические синхротронные методики и две биомедицинские технологии.

Созданы и модернизированы две научные лаборатории: Учебно-методичиский центр «Кристаллизация» и лаборатория синхротронных исследований в вирусологии.

Разработаны образовательные программы и проведены два курса повышения квалификации, школа молодых ученых, различные стажировки сотрудников, обучение методам белковой кристаллографии и хроматографической очистки белков. Обучено более 200 молодых специалистов.

Все мероприятия, заявленные в плане-графике работ на 2021-2023 года, выполнены в полном объеме и соответствуют мировому уровню. Сведения о ходе выполнения проекта размещены по адресу: http://vector.nsc.ru/fcp.